RD-N189 246

ROVER: R PROTOTWE ﬂCTWE VISIIJN SVSTEH(U) ROCHESTER i1
UNI DEP OMPUTER SCIENCE O J COOMSS ET AL.
AUG 87 TR-219 DACA76-83-C-0001




Rt

w

o

S

N

ig - .

) " 1.0 % b

3 == & )2 2

i "m 1] .= 2
2 ==

=
_ 125 | .4

3 23 et e
J

: a T
& RNl S %

: ‘i}" R Y.




------------

ke
AD-A189 2458 |
e | UIE_EiLE copy

|

; | ROVER: A Prototype Active Vision

: / System

e
= e David J. Coombs Brian D. Marsh

N S The University of Rochester E
" . - Computer Science Department

Rochester, New York 14627 =
. ' Technical Report 219
- 3
- i \—- Avnrrrseme 30QT

3 :
5
Y .’
N
.
h Y
&

5 H
”
o
N
hY
N a

Department of Computer Science
University of Rochester
Rochester, New York 14627

DISTRIBUTION STATEMENT K ‘

Approved for public reloco;
Distribution Unliml.l:ﬁ.i_m R

g7 12 22 013




ROVER: A Prototype Active Vision

W System
Vv . .
3 David J. Coombs Brian D. Marsh
Y The University of Rochester DTI (“'
L Computer Science Department ! N
i Rochester, New York 14627 ELE VS Q:"“w-,
S )
IR
d . “ EDEIN L4
f. Technical Report 219 : (;lAN 151388 oo
.l: s n )
’ - et
! August 1987 3
: i
’i
e
’
$: Abstract
({
1
:0 The Roving Eyes project is an experiment in active vision. We present the design
' and implementation of a prototype that tracks colored balls in images from an on-line
CCD camera. Rover is designed to keep up with its rapidly changing environment
N by handling best and average case conditions and ignoring the worst case. This
N strategy is predicated on the assumption that worst case conditions will not persist
& g
N for long periods of time and the system’s limited resources should be directed at the
I problems which are likely to yield the most results for the least effort. This allows
k Rover’s techniques to be less sophisticated and consequently faster. Each of Rover's
! major functional units is relatively isolated from the others, and an executive which
’: knows all the functional units directs the computation by deciding which jobs would
- be most effective to run. This organization is realized with a priority queue of jobs
"y and their arguments. Rover’s structure not only allows it to adapt its strategy to
" the environment, but also makes the system extensible. A capability can be added
L] . . i .
1 to the system by adding a functional module with a well-defined interface and by
' modifying the executive to make use of the new module. The current implementation
X is discussed in the appendices.
”
¢
’
L This work was supported in part by NSF research grant number DCR-8602958 and in
4 part by U.S. Army Engineering Topographic Laboratories research contract number
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the environment, but also makes the system extensible. A capability can be
added to the system by adding a functional module with a well-defined inter-
face and by modifying the executive to make use of the new module. The current
implementation is discussed in the appendices. . _
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1 Introduction

As part of an ongoing research program in active vision at University of Rochester's Com-
puter Science Department [Ballard et al. 1987,Ballard 1987], the Roving Eyes project (Rover
is an experiment in the design and implementation of an active vision system. For this
project, the task is the identification and tracking of moving (as well as stationary) objects.
Images are taken by a fixed camera and are first analyzed to detect regions of light-colored
blobs in a dark field. These areas are further analyzed to detect the specific identity of
the objects in the scene. The results of this identification process are then incorporated
into a database which represents the system’s model of the world. With such a model.
the system is capable of maintaining accurate correspondence between distinct objects over
time. Hence, Rover represents a vision system with cognitive as well as sensory abilitjes.

As an example of Rover performing this sort of task, Figure 1 shows Rover’s graphics
display as it tracks the position of one ball from the lower left corner of the scene to the
right and upward while another ball simultaneously moves from the upper right to the left.

The initial Rover prototype has been designed only to deal with distinctly colored spher-
ical blobs (¢.g., balls, eggs, etc.). This simplification in the sensory task of object recoguition
allows us to address simple cognitive issues as well as sensory ones. thereby increasing the
scope of the system. A descendent of Rover could collect enough information to perform
such tasks as identifying a solitary block in a field of spheres or identifying particular blocks
not just by color (which in fact is just the simple calculation of a moment) but by using
alphabet blocks which may be distinguished by the letters on their faces.

2 Maintaining Correspondence—Strategic Issues

One of the ma jor problems in tracking moving objects is the correspondence problem. Specif-
ically, given two images, we want to be able to identify those regions in both images that
represent the same object in the scene. The correspondence problem raises issues of cogni-
tion as well as sensation and is not easily solved by simple template matching techniques.
An active vision system must cope with the trade-off between input bandwidth and the time
required to perform the necessary perceptive and cognitive tasks. Evolution has balanced
these trade-offs for animals fairly well; Rover must address the same problem, as it is a
serial, cognition-limited system that must be flexible and adaptable. Keeping the sampling
time interval short, however, requires Rover’s cognitive analysis to be fairly fast. and con-
sequently it must be simple. Due to the simplicity of these algorithms, we can only expect
them to succeed most of the time, but we believe occasional failures are tolerable because
Rover’s world is constantly changing and will likely present more favorable data within a
short time.

Rover’s strategy for maintaining correspondence between objects in a scene is based on
a separation between cognition (and attention) and sensation. Maintaining correspondence
over time is a cognitive ability. In Rover, motion detection and object identification are
lower-level, sensory problems. Sensory techniques (e.g., for motion and blob detection) are
used to analyze the current image and translate it into symbols that may be effectively ma.
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¥ Figure 1: Graphics display of Rover tracking two balls simultaneously: the lower ball moves
) left to right, and the upper from right to left. During each frame interval, Rover locates

the light-colored balls in the field and denotes each ball with a gray rectangle. Over time,
A the rectangles drift across the display (possibly overlapping each other) as the balls move in
™ the field. Much smaller boxes appear occasionally; this occurs when the system mistakenly
thinks a ball is smaller than it really is. Rover is robust against these problems.
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nipulated by cognitive processes. These processes use this information not only to maintain
correspondence but also to focus attention on areas of relative importance.

The most natural way to coordinate sensory tasks and cognitive tasks would be in aun
event driven semantic network. Such a structure run in parallel would present an extremely
powerful organization. Unfortunately, the machine used for the implementation of the pro-
totype is not a parallel architecture. To use the machine at our disposal most efficiently. we
have devised a control structure that allows for an extremely fine grain multiplexing of re-
sources. Sub-problems are kept small and are executed only when their relative importance
is great enough to the overall functioning of the system. These sub-tasks are:

1. Several kinds of independent sensory analyses continuously process raw image data.

2. Cognitive processes focus (the more expensive) attentive resources (task tvpe 3) on
interesting parts of the scene. When they need input from the real world thev sample
the results from task 1.

3. There mayv be several simultaneous loci of attention and several attentive processes
working on each locus at the same time.

It is worth noting that this organization is not inconsistent with parallel implementatiow.
In particular. the independent analyses of task 1 and simultaneous attention to differen:
aspects of the image in task 3 would be natural candidates for implementation on a paralle]
svstem such as the Department’s BBN Butterfly Multi-processor.

Rover’s behavior can be characterized as a coping strategv—it accumulates as much
information as it can at every moment, but guards against spending an excessive amount of
time extracting a particular bit of information and consequently losing track of the objects
in the scene. For this reason, the system accumulates information incrementally, preserving
as many results as possible if analysis must be cut short during periods of rapid change.

3 Real World Design Constraints

The Rover prototype is constrained by several environmental factors bevond our control.
The most important constraint on our design is the computational environment used for thie
implementation. In particular, the supporting hardware, a Sun-2/120, is a serial machine.
with no reasonable facility for exploiting parallelism. With no mechanism for parallel task
execution, there is no natural way to realize our task-oriented system organization. At the
same time we want our implementation to embody the natural strategy described above.
To do this, our system explicitly multiplexes its analysis between the sensory and cognitive
levels. The serial nature of the computational resources make it essential to be able to
redirect our resources constantly to the most promising task. In a parallel environment.
irrelevant tasks do not impair the overall computation as seriously since other computation
is proceeding concurrently. In a serial environment irrelevant computation can be disastrous
for system performance. To enable processing to focus on only the most promising areas. it
is essential that our analysis be broken into small computational tasks. At the end of eacl
task the relative importance of that area of analysis can be re-evaluated.
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One of the most telling limitations of the hardware is the bottleneck between the Dat-
acube frame buffer and the Sun. Due to the lack of image processing hardware all image
operations have to be performed on the Sun. When the project began. it took a full »
seconds to transfer the contents of the entire frame buffer to on-board memory. Hand opti-
mizations lowered this figure by a factor of 8, but the significance of the bottleneck is still
substantial.

Another ma jor consideration was that the prototype design, once implemented, be easily
extensible. We feel there is significant potential for future research involving the Rover
svstem and we want to provide a useful software base for this work. The Rover prototype
is designed to facilitate the replacement and addition of functional units. This will ease the
eventual replacement of the simple routines of the initial prototype with more sophisticated
ones.

4 Prototype Design

The principal goal of the Rover system is to maintain correspondence between multi-frame
images of moving objects. To do this many different elements need to be manipulated.
The database representing the most current state of the world needs to be maintained.
To keep this information up to date. input images must be analyzed to detect areas of
motion. These areas of interest in the original image are then correlated with the world
database and if necessary have further discrimination techniques applied to them. Since
there are potentially multiple areas of interest in any input image but a limited amount of
computational power and time to spend processing them, the cycles spent processing each
area must be carefully monitored to insure that the information derived from each input
image is complete as possible. It is conceivable that any input image will contain more
information than the system can process in a reasonable amount of time. If this happens
the image and all associated processing is abandoned for a fresh view of the world.

To perform these various tasks, the prototype is broken up into three main modules:

e Executive—Responsible for overall system coordination and task scheduling.

¢ Raster Segmentation/Motion Detection—Responsible for detecting areas of blobs
in the input image and for segmenting the image into small manageable sub-images.

¢ Object Discrimination and Correspondence—Responsible for identifying the
sub-images supplied by the Raster Segmentation module and integrating them into
the world database.

Figure 2 diagrams Rover’s main functional units and their relations to one another.
Briefly, the Executive begins the work on each image frame by enqueueing a batch of “raster
scans” tasks. These tasks implement a static search pattern of the current image. While this
is going on, the executive watches the clock to avoid spending too much time on any single
image frame. (Other strategies could be employed to search the image frame for potential
objects—see Appendix C.) Tasks from the Raster Scan Cluster seek light-colored “blobs”
in the image frame that may be objects in the scene. The Object Discrimination Cluster
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X computation proceeds in a bottom-up fashion.
L]
‘
I
)
. executive /L_ module
) data : . control
. flow .
<
data
\ object ~ ™\
o
‘: model
1
N
LA
N [ TR e
. . . .
N : : :
X : . .
" : . .
“ . g .
4 M T :
. toe rs-seg-merge :
Y : . .
. od-zoom .o .
& . .o .
s : . .
| : % Coovn D
: : L :
\ . . .o .
. object discrimination . . .
. : cluster . 0 raster scan cluster .
j :'.l.lll.'l‘.‘..l.'.: :."III..I.I.II.Il....-lll:
]
i Figure 2: Functional Overview of Rover
]
7 ] Before describing the prototype design in greater detail, we will note the assumptions
i oye .
| we made about the world to facilitate the development of the prototype. Because our aim
v was to develop a system to address a broad range of issues, we constrained the depth of the
p sensory and cognitive problems Rover would have to solve as follows:
\
o Simple Targets— The targets used for tracking are distinctly-colored spheres. Ac-
! tual identification of different spheres is done on the basis of past position. velocity.
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and “color” (image intensity).

s Controlled Lighting— Shadows are not a problem addressed in the initial proto-
type, so light sources are located behind the camera.

¢ Horizontal Motion Only— Objects are assumed to move in the horizontal direction
only. (In fact we were able to loosen this constraint considerably).

¢ No Occlusion— Targets are expected not to occlude one another. Understanding oc-
clusion requires more complicated cognitive and sensory abilities; however, the system
achieves limited success in the face of occlusion by assuming the balls participating in
the occlusion a single “object.”

e No Complete Replacement— Balls will not swap positions between successive
images.

4.1 Tasks and Inter-module Communication

A module is an open-loop! process that is invoked by another module. Modules that perform
functions related to a particular goal are grouped together in a cluster. The cluster is strictly
a logical unit used to organize the system: related variable tvpes and efc. are shared within
a cluster. The actual invocation of a module is done through task creation. The task is the
actual unit of computation and is created at run-time. It is an instance of a module and
performs a portion of the module’s work. Tasks are executed according to a priority based
on the relative importance of that task to the overall image analysis. Rover implements
this lightweight process model by maintaining a priority queue of tasks that are ready to
execute. Tasks are enqueued with arguments and once scheduled will run to completion.

In the current implementation, module invocation (beyond the initial enqueuing of
enough raster scan tasks for the whole image frame) is driven by the results of each stage
of processing. Each module performs its assigned function and enqueues the module whose
work should be done next based on the results of the current module. Information is passed
between modules either by placing it in a global data structure (as in the raster scan cluster)
or by wrapping it up and handing it to the next module as its argument (as in the object
discrimination cluster).

A module may be composed of several functions, although it is crucial that each module
execute and return quickly so the entire system is not bogged down by a sluggish module.
(Rover is intended to be robust enough to adapt to a more rapidly changing environment by
processing each frame partially. A module that runs a long time can cause the executive to
lose track of the environment because there is no mechanism for interrupting a runaway or
hung task.) A module that needs to perform some auxiliary task to continue its computation
is thus split into

1. a module to perform the initial computation,

1Here open-loop means that the process can be dispatched without requiring the invoking module to
monitor its progress.
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2. a module to accomplish the auxiliary work.

¥ 3. and a module to be enqueued by module 2 to conclude the work.

'

' . . . . :

WY Each module is broken into functional units such that the computation performed by eacl
N unit doesn’t take too long. At major decision points or functional transitions the next
v appropriate function is enqueued. ?

.. 4.2 The Executive

v

L The Ezrecutive is the framework for all the other functional modules. It coordinates the
! integration of all the functional units, from the extremely low-level sensory modules that

perform pixel operations to the higher level cognitive modules that maintain the world

o8 . . . . . .
. database. The specific functions it performs are controlling task scheduling. task execution.
resolving temporally global issues of correspondence and system initialization.
]
o

Work is requested in the system by enqueuing tasks on a general work queue. When a
A task is selected from the queue (because it is the oldest highest-priority task in the queue) it
is dequeued and the corresponding code is invoked. The framework (i.€.. main loop) look~

';' like the following:
Y
N o Initialize system
3 -
% o Forever
e — If the task queue is empty, then grab a new image frame, enqueuc a batch of
X Raster Segmentation tasks for the frame, and reset the interval timer. (See Scc-
; tion 4.2 for a description of the system’s notion of time.)
~ Get a task from the work queue and invoke it.
. ~ If there is any time left in the current interval, then return to the work qucuc for
. more work; otherwise flush the task queue.
: The priorities assigned to tasks are fixed according to the module the task instantiates,
Y but their assignment is not arbitrary. The Raster Segmentation priority is lowest because
R a raster segmentation task should only be executed when all other processing on other
portions of the input image has finished. Once the R.S. module has identified a potential
: object containing subarea, it will enqueue an Object Discrimination task. There will likely
N still be R.S. tasks on the work queue, but object discrimination is given priority since there
. is a high probability of making a positive object identification. This process of object
: discrimination is also composed of several schedulable steps with the priority of the step
being proportional to how high level the task is. Thus, as the system comes closer to
4 identifying an object, it focuses more on that object. Once an interesting sub-image has
’ been processed, lower level tasks still on the work queue will be executed.
’
2Although the modules in each cluster are currently structured as a progression of computational stages.
’ Rover's facilities can support other organizations (e.g., 2 hierarchical system in which each cluster also has
,: a queue of tasks and one module in each cluster acts as the “executive™ for that cluster). See Section 5.1 for
. more discussion.
3 L]
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’ It is expected tha: future work on Rover will incorporate a dynamic priority scheme that
" takes into account such issues as spatial relevance and confidence levels (see Section 4.4).
&

Temporal Model of the World

‘The executive maintains several notions of time. It helps maintain the world database over
& the course of input images by performing functions not rightly relegated to either of the
lower level modules (via the virtual time stamp). It also attempts to keep track of the
passage of real time in relation to the processing it controls (using the interval timer): the
e executive must prevent excessive computational effort being expended on any one image as
L the model of the world maintained internally could fall hopelessly out-of-date.

The executive manipulates lower-level modules (i.e., Raster Segmentation and Object
Discrimination) to perform the analysis of an image. These routines perform their analvses
based on the input snapshot and the past history of the world stored in the world database.
An obvious problem with this is that information that is either missing in the current
snapshot of the world or that is simply missed by the analysis should still be accounted for
in some way. An obvious example would be the movement of an object from the field of view.
While it might be reasonable to simply delete the object from the world database, this makes
the database extremely volatile; a mistake by the low level routines at any point could result
in the accidental but erroneous removal of an object. To counter this problem the system
\ maintains a measure of confidence in each object stored in the world database. Whenever
- the position and identification of a particular object are reaffirmed, this confidence is raised
to the maximum level. Should an image be processed without any new information being
provided about an object, for whatever recason, the confidence in its identity {as well as
its existence) is lowered. Once this confidence falls below a certain threshold the object is
deleted. Hence, if the system fails to process any information pertinent to an object in a
long time, it will forget about that object. This provides the system with some measure of
resiliency over time.
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Another interesting result of this confidence degradation is that the system is capable of

dealing with temporary occlusion. In such a case, twoobjects will enter a spatial relationship
causing one of them to be partially occluded. Should they be identified as a single object
by the Raster Segmentation and Object Discrimination modules then one of two things will
happen. The combined colors of the objects may be identified as a new color and assigned
X a completely new entry (albeit an erroneous one) in the world database. Alternatively.
» the object may be identified as one of the existing objects that the system expects to find
+ in the area. In this case there will be a temporary aliasing of one of the objects to the
’ other. Since we assume that the occlusion is temporary, in the first case the objects will
separate, the confidence in the erroneous composite “object” will eventually degrade and it
) will “disappear.” In the second case as long as the objects separate soon enough the world
j model will still contain the aliased object and its position will be updated. In both cases.
! the temporary loss of correspondence is overcome.
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"_ The amount of time spent processing a single image is bounded to prevent falling too far
behind the real world. The executive maintains a notion of a virtual time segment, which is
; the maximum length of time that Rover should spend processing any single input image. If
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at the end of a time segment there is still processing to do on the current image. it is likely
that anyv information that could be derived from it would be obtained at the expense of

::' falling behind. To avoid this problem, any tasks that are pending at this point are destroyed
A and processing on the new image is started by enqueuing new Raster Segmentation taske.
A Task destruction is accomplished by simply flushing the queue of any waiting tasks. (This
L is one reason for tasks being open-loop.) Additionally though. all objects whose internal
. representation went un-updated have their confidence degraded. Thus the system responds
:‘: to over-stimulation by ignoring some of the scene to keep up with the world as well a-
M possible.
-
K
4.3 Image Segmentation—Locating Objects

) . . . . . .

~ The Raster Segmentation (R.S.) cluster isolates the locations of objects in the scene using a
-:3 coarse sampling of the image. When the executive notices that a potential object has heen
o located. it enqueues an Object Discriminater to examine it. Thus, the Image Segmenter

- is a cheap filter that saves the expense of transferring uninteresting portions of the image
. from the frame buffer (a real bottleneck) and allows the system to concentrate expensive
:l': high resolution operations on areas of the image that are likely to produce the most useful
:t results.

The Raster Segmenter’s design was strongly influenced by the characteristics of the
gl Datacube frame buffer and our interface to it. Grabbing horizontal lines from the frame
- buffer is faster than any other mode of acquisition, so the R.S. cluster uses a coarse sampling
." (every 16t*) of horizontal "rasters™ from the frame buffer to locate potential objects.

:,' Each raster is examined by a line segmenting task. (Each “frame” in the image sequence

o consists of a pair of images taken in rapid succession from the CCD camera. These image:

“ are digitized in the left and the right halves of the frame buffer. respectively.) At the
" beginning of processing each frame, the executive enqueues a raster segmenting task for
& each of the rasters that will be scanned in the frame.

: Each image segmenter performs these operations on its raster:

Y

4

"‘ 1. Segment the raster—locate light segments of the raster which might be caused by
.p a light object on the dark field of the background.

3

% 2. Identify pairs of segments—match pairs of raster segments which appear (and
e overlap) in both the first and second images; these are positive segments (i.c.. likely

not due to noise in the image).

. Identify vertically associated rasters—grow “regions™ of vertically overlapping
positive raster segments that seem to indicate a single object.

. |
(]

§

o
)

" Figure 3 demonstrates the results of segment pairing and object growing. On the left
‘ pairs of segments have been identified. A little while later. we see (on the right) that the
i) vertically overlapping pairs have been “grown” into an object region.
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Figure 3: Paired raster segments in the left hand image, and an object region grown from
them on the right. Paired segments are denoted by crosses and the object region is enclosed
in a box.
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Segmenting Rasters

The raster segmenter uses a one dimensional “difference of boxes" edge operator (based
on the Kirsch operator) to detect high-contrast edges in its raster from the image. A
posttive segment consists of a peak-valley pair in the responsc of the edge detector. Such
a pair should indicate the presence of a light-colored object in the image (against the dark
background). The segmenter uses a function of the mean and variance of the intensity of
the image raster to determine what response magnitude constitutes a positive respan<e of
the edge operator (rather than noise).

Pairing Segments

A pair of segments on a raster (one from each image of the raste 1+ match if the segment
in the first image overlaps the segment in the second image  Any unpaired segments are
ignored as bogus or noisy false responses. This pairing critenan effectively hnors the cla--
of objects the system will recognize to those whose retinal image 1~ not completels displaced
in “the blink of an eye.”

Thus. a small object traveling at high velocity perpendicular 1o the line of cjehit will be
ignored because its images in the first and second blinks will not correspond 1o each ather.
Conversely, an object of virtuallv any size speeding directly at the camera will get a ven
strong match.

Growing Objects from Segments

The R.S. cluster maintains a list of the responses from the image segmenting task- (one
for each raster being scanned). As each segmenting task returns with its list of segment
pairs, it updates the record for its raster. In addition. the cluster keeps a list of ohject
regions. As each segmenter returns its list of segments, it tries to update the object list
with the new information it is returning about the image. If one of the segments the task
found corresponds to one of the objects in the list that segment is added to the object. (A
segment corresponds to an object if it is adjacent to the top or bottom of the object. and it
overlaps with any of the rasters already in the object, and its velocity—which is estimated
from the rapid pair of images—matches closely the velocity of the object.) If the segment
matches no current objects, the list of segments is searched for an adjacent (unmatched)
segment which could form a new object with the segment being returned. If a segmenter
task returns a negative response (no segments found) the object list is searched for objects
that are adjacent to the empty raster being returned. Any such objects are bounded by
this raster and hence complete. Of course, if a segmenter misses a segment and returns an
erroneous negative response, the object region will stop short of the real boundary of the
object. An object is also bounded if the adjacent raster contains no segments that match
the object (although there may be some segments in the raster). A clean-up task sweeps
the object list periodically to detect this condition.

When the clean-up task notices that an ebject is bounded above and below. it enqueues
an object discrimination task to examine the object and try to match it against the current
model of the world. as described in Section 4.4.

11




4.4 Object Discrimination—Maintaining Correspondence

Once blobs have been roughly located by the R.S. cluster. the identification of individua!
objects must be determined. The initial identification and maintenance of correspondence
with particular objects is done by the Object Discrimination (O.D.) cluster. This cluster
consists of high level routines used to interface with the executive and low level routines
used exclusively by the cluster for processing raw pixel data.

When the R.S. cluster locates an area in which it believes there is an object. a request
for closer inspection is put in the system queue and an entry is made to a Temporary Image
Buffer (TIB). The queued request will contain a reference to this buffer and will be used
when the request is serviced by the Object Discrimination cluster. Note that no part of the
image is actually copied out of the frame buffer at this point.

The analvsis performed by this module is broken into the following sections:

e Image Validity— Insures that the sub-image returned by Raster Segmentation is
useful. (See Section 4.4)

— Detection of Good Images—Determines if part of the object in the targe
image has been cut off by the border of the sub-window.

- Detection of Partitionable Images—Determines if the sub-window contains
more than one object in it.

— Partitioning of Images—Partitions the sub-window so that each partition
contains only one image.

¢ Maintaining the world—Does the high level correspondence that allows the world
database to reflect the state of the observed world at any point in time. This informa-
tion is used to determine how much low level processing is necessary. (See Section 4.4}

— Spatial Matching—Attempts to identifv objects by correlating object position
with predictions about the way the world will look given the passage of time and
its effect on the world database.

— Color Identification—Expresses the color of the object in the input window a-
the ordered pair containing the mean and variance of the object image intensity.

— Color Matching—Determines if the color is one already seen by the svstem.
Assigns each color a unique integer identifier.

Image Validity

In Rover’s world. complete identification of an image is a computationally expensive proce-
dure. As a result, it makes sense to attempt to determine whether the information derived
from a particular image will be of any use. In this first stage. the dimensions of the win-
dow of interest identified by the raster segmenter are passed as parameters. (The raster
segmenter avoids reading blocks of the image from the frame buffer as the transfer to Sun
memory is an extremely time consuming operation). At this point, the sub-image of interest
is transferred from the frame buffer to Sun memory.

12
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at The sub-image is checked to determine whether an object straddles any of its edges.
’ This is done by passing a simple threshold operator over each boundary. If a high intensity

:s:' patch is located, this is taken to indicate that an object is so close to the edge of thu

-.:: . window that part of it has been lost. This missing portion may be critical to the correct

::o: identification of the object. As a result, we adopt the simple strategy of abandoning furtlier

:::' evaluation of this image. However, we return a list of the boundaries of the image on whicl

the object is incident. This information is intended for use in stretching the window to

) obtain the missing information. This stretching is not implemented in the prototype (sec

;': Appendix C).

:, The sub-image is next analyzed for the presence of multiple objects. This is done

:.vfﬁ by scanning horizontally along the image every few rows. When a high intensity patcli

is detected. it is considered to be an object. The center of the high intensity patch is
) calculated and then a line is drawn vertically to determine the upper and lower boundaries
of the object. From this information, a more tightly constrained windcw is drawn around
the object. This scanning procedure is continued until the entire input window has been
traversed. A list of object dimensions is returned. Figure 4 illustrates the result of this
procedure. An object identification task is enqueued for each object found.
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; Figure 4: A blob identified by the Raster Segmentation cluster and properly split up by the
':' Object Discrimination cluster.

The techniques used for the object location and window partitioning are admittedly
primitive. Edge finding. for example. is done by simple thresholding. The prototyvpe doe-
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use a more sophisticated one dimensional Kirsch operator in the raster segmentation routines
(see Section 4.3). The development of the Kirsch occurred concurrent with the development
of the object discrimination routines and hence the simple t..;esholding was chosen to speed
the development effort.

Maintaining the World Model

The second phase of the object discrimination process is responsible not only for the accurate
identification of objects at a moment in time, but also for maintaining correspondence of
objects over time. This phase is where the majority of the maintenance is done on Rover's
model of the world. Maintaining correspondence of objects involves doing spatial matching
to minimize the search space for correspondence, actually identifying objects by color if
necessary, and using the spatial and color information to determine if the object identified
is an existing object or a new one. The model is then updated to reflect the results of
matching the object to Rover’s known world.

The entry of each object in the world database has information about the last determined
position of the object and its last known velocity. Using this information it is possible to
predict at a given point in time the new position of the object and its approximate velocity.
Should the old velocity of an object and the apparent velority of the object in the window
be somewhat different, it may be either that the objects are different or that the object
has changed its velocity. To resolve this ambiguity, the expected current position of the
object in the database is computed with the observed velocity and this projected position
used as a basis for comparison. If the position of the referred window is close to the
predicted position of an object then the position of the object in the World is updated
and the request is finished. This “dead-reckoning™ approach provides a way of conserving
computational power, but provides a potentially less accurate picture of the world than
could Ye achieved by always explicitly identifying each object. To compensate for this less
i accurate correspondence procedure, a confidence measure is associated with each object in
the World database. Every time the position of an object is updated without calculating
the identity of the object (i.e., with the position correlation described here) the ohjert’s
measure of confidence is degraded. Once the confidence falls below a certain point the
unidentified object will be identified completely.

Once the object is identified either by position or by identity, the appropriate world
database entry is updated. The current position of the object and its new velocity are
recorded. If the identification is by position then the confidence in that identity is degraded.
If the identification is by identity the confidence in the identity of the object is set to 100%.
If no entry currently exists in the world database, then a new entry is made.

“Color” is defined in the prototype to be the mean and variance of the intensity in the
object. The spheres that serve as our initial targets have the nice property of being rela-
tively invariant in reflectance regardless of the viewing angle. This simplifies identification
considerably. To ease the cognitive burden, we assume that all spheres have a distinct color
in Rover's world. In order to calculate the mean and variance of the object. its boundaries
are located more precisely by using an edge detector. The intensity values within these
boundaries are used to calculate the “color” of the object.

14
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ot . Inevitably there are some differences between the mean and variance of two different
- images of the same-colored sphere. To deal with this problem, we adopt the ad hoc approach
i:" of considering two “colors™ to be the same if they differ by only a small percentage. Thi«
::; : percentage is the difference of the weighted sum of the means and variances. If the colors are
:.‘ considered to be the same then the object being identified is assigned an integer identifier
e associated with that color. Should the difference in the two colors be great enough then the

system considers the color to be distinct and assigns it a new identifier.
o
*_‘i
7 5 Future Directions
A%
The following section describes work that represents the next logical steps in the full devel-

. opment of the Rover svstem. It moves Rover closer toward meaningful cognitive interaction
K j with its environment and attempts to solve some of the more basic sensory problems that
n are unaddressed in the initial prototype. Tvypical cognitive development involves using the
: object historv and models of object behavior to aid in identification and correspondence.
E Typical sensory problems are dealing with occlusion and recognizing more complex objects.
g such as alphabet blocks.
"
! »
iyl
0 5.1 Architectures and Control Strategies

Y

o In the current prototype. the system operates in a bottom-up data-driven fashion wih
K minimal top-down control. This structure is a result of our goal of constucting a svsten
";: with both sensory and cognitive abilities. Thus the prototvpe demonstrates (albeit almost
::;: trivially) that the architecture supports both bottom-up and top-down control strategies.
::. Successors of Rover might explore architectures which perform “pre-attentive” percep-

tual processes bottom-up, without direction from any attentional module. Parallel signal

N processing is now available to us with our recently acquired MaxVideo (TM) hardware.

- : “Attentional” perceptual and cognitive processes could be controlled by a central mod-
o ule that manages the system’s limited computational resources based on the results of the
> pre-attentive low level processes. The architecture we have developed makes it possible to
) experiment with various organizations and strategies that could embody such systems.

N

L7

% 5.2 Extending Cognition

v ,'

',._ Future cognitive capacities could use the history of the world to guide the identification
- process. The executive can make a guess about what the object in a particular window will

. be and use it to influence which routines in the Object Discrimination module are invoked.
5 The result will be a much more intelligent guess about how to go about processing image

oy windows,

A In addition. the executive could use such information to decide which areas of the scene

are likely to contain useful information. ignoring other portions during a crucial detail
acquisition task.
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Converselv. a good clean image of an object could be saved for later processing if the
svstem must devote its attention to keeping up with a scene that is changing extremely
rapidly for a short period of time. As long as the old image can reliably be attributed 10
the correct object by continued tracking. it can be processed at the system’s leisure. Note
that the system architecture could easily be modified to support this sort of off-line analysis.
For instance, such long-term tasks would be retained on the task queue across more thau
one frame interval. pending an opportunity to indulge in detailed analysis.

5.3 Understanding Occlusion

Section 4.2 describes the prototype’s current “approach” to handling occlusion as a conse-
quence of the confidence measure associated with objects in the world database. A more
effective technique would be to deal actively with images in which occlusion occurs. In a
rudimentary form this would involve explicitly detecting the occlusion and eliminating all
further processing of the image. This would prevent the appearance of superfluous and/or
erroneous objects in the world database. A more sophisticated solution would attempt to
do object identification in spite of the occlusion.

The problem of dealing with occlusion might thus reduced to detecting it. The difficulty
of detection increases with the complexity of the objects which Rover is required to recog-
nize. When the cognitive domain is distinctly colored spheres, we could use a segmentation
scheme that detects not only binary changes in intensity using edge operators. but intensity
changes from one color to another.

Wlien the cognitive domain becomes more complex. say by using alphabet blocks. o1
using both the blocks and the spheres. the solution might use the straight line detectio
techniques of [Burns et al. 1986] to detect the outlines of the boxes. General areas of interest
would be detected using a simple edge operator with region growing. Connected lines could
then be grown using the perimeter of the binary region as a starting point. It would then bhe
necessary to define legal relationships between these lines and base the detection decision
on an evaluation of these relationships.

An alternative and potentially more successful approach involves simply assuming that
there is only one object if multiple objects are not detected. That is, we ignore occlusion.
Instead. we attempt to identify the block using the methods described below. One of the
constraints mentioned below is that the figures (letters) that may appear on the blocks are
cataloged beforehand. giving Rover a source against which to compare potential identifi-
cations. If the regions in the object can be matched to one of these known id's then the
information is used. The gamble is that no information (or worse, erroneous informatiou
will be derived if the images are occluding. Empirical results will be needed to determine
whether occlusion will make identification so difficult as to justify the expense (both in com
putation and development) of good techniques for detecting the occlusion so as to prevent
the useless expenditure of computation time.

16




§ (P Eta TR TOI RN AR RPN NN g g¢ 438" v A U T\ AU N : Yol - - Aot AT aba At ad et afo et A AL SaF Tl Tel

W

o

" 5.4 Recognizing Alphabet Blocks

., A natural extension of Rover’s current capabilities would be to introduce more structur

! into the visual environment. This would put more emphasis on fast image analysis without
,' modifying Rover’s basic contro] strategy. The new domain would encourage incorporatio,

A of new pipelined video-rate image processing hardware in our vision laboratory.

Identification and tracking of alphabet blocks is significantly more complex than tle
corresponding identification problem with the multi-colored spheres. Issues of rotation.
- projective distortion. and character recognition must all be resolved. The solutions em-
‘ ployed must be fast and effective. They need not, however, work all the time. As long a-
characters can be effectively recognized most of the time when given a good view. enougl
information can be gathered to maintain correspondence.

The proposed solution to this recognition problem is strongly reminiscent of Constructive
Solid Geometry Techniques [Ballard and Brown 1982} and is composed of:

e Edge Detection
¢ Segmentation/Blob Growing

¢ Blob Relations

The edge detection facilitates the segmentation. The segments are then partitioned into
faces and the region described by each face is compared to a dictionary of face relations
that describe. in a slant-invariant and rotation-invariant form, the various characters that
- are known to the system.

To do segmentation we propose a linear region growing approach similar to the one used
by the current prototvpe to grow raster segments into “objects™ (see Section 4.3). This
allows us to segment the image into blobs in time that is almost linearly proportional to the
size of the image. A collapsing union-find technique such as that used by [Bukys 19%6] can
achieve the needed speed. The segmentation parameterizes the blobs by size and center of
mass. We may also have special-purpose hardware capable of this segmentation in the near
future.

Once the image has been segmented into blobs, the blob identifiers are inspected and
fully related to one another. This process yields relationships such as which blobs surround
which, how many blobs are contained in a particular blob and how many blobs are adjacent
to a particular blob. This information should provide a way of quickly discriminating be-
tween different characters as long as the blob relationships describing them are significantly
different. An obvious example is the difference between X’s and O’s. The X has a one region
containing another, the O a region containing a region that contains yet another region.
) The amount of information stored is small and is easily compared against a dictionary of
- known recognizable figures.

Ve

This technique, which is similar to the relational matching of [Barrow and Popplestone 1971},
appears preferable to moments [Alt 1962] because it is considerably faster and more stable.
([A1t 1962] advises the calculation of several moments to ensure accurate character iden-
tification.) The blob technique provides a means for identifying most distinct figures (it
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would doubtless have trouble distinguishing between “I" and “I") that is completely invari-
ant with regard to rotation about the z-axis. We would also argue that it is more invariant
with regard to the skewing that results when a cube rotates about jts vertical axis.

Of course, due to rotation about the y-axis (vertical). there will be times when the view
of the target block is such that the images of the characters on the sides of the target are
distorted beyvond recognition. Moreover, if the image is bad enough, it mayv not be worth
the computational effort to extract the identification using any technique. In this case the
approach which seems best is to simply relax until a better view is available.

The effectiveness of this algorithm hinges on the ability to segment images consistently.
If the segmenter produces different blobs and blob relations when the image is perturbed
at all then the technique will fail miserably. We can control the experimental environment
somewhat to ease the burden on the segmentation routine, but only experimentation with
real images will indicate whether this is a fruitful approach.

6 Conclusion

Roveris a working system that exhibits both sensory and cognitive abilities with real world
images. The architecture we devised in the course of designing the prototype provides a
stable base from which to launch further experimentation with active vision systems in the
laboratorv. The system is easily extendible. and the structures can support a wide variety
of organizations. Future work can incorporate real-time hardware, both for image analysis
and sensor control. into Rover.
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A Current Implementation -
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This appendix briefly describes various parts of the prototvpe to provide ties to discussion ‘;
of Section 4 which is divorced from the code for clarity. Figure 5 depicts the topologyv of A
Rover's source code files. This should serve as a guide to the source code. The clusters and -
libraries are briefly described in this section to provide an introduction to the code in the s
current implementation. .
i- d
-
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| re__dqWriteBlockxy.c re__color.c re__world.c \ N
i ! -3
] re__tib.h re__partition.h re__segbuf.h re_w_libh I K
I re__tib.c re__partition.c re__segbuf.c re_w_libe : s
|
o o i o o B GEr S D m G EE G N G W M G e e e En e o o -:.
Figure 5: Rover's Source Code Files
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A.1 Executive (re_exec)

Rover begins execution in the Executive, setting the command line options and initializing
the global data structures. The Executive then starts the first frame interval.

At the beginning of work on each frame, the Executive notes the time and enqueues
enough raster scans to search the entire frame image at a predefined deusity (every 16
horizontal lines). When all interesting work has completed or time runs out on the curreit
frame (the time limit is a compile-time system parameter) the Executive flushes the quene
and degrades the confidence® of each object in the world database (DB). The confidence
of an object is degraded the most if it was not updated at all during the previous fram.
interval. The confidence is degraded a little if its position and motion were updated base!
only on location and size correspondence with the image. and it not degraded at all if th«
“color™ of the item was used in the correspondence check (i.€., the object’s identity wa-
“completely™ verified. assuming each object has a unique “color™).

A.2 Clusters
Raster Scan Cluster (rs_*)

This cluster scans the image frame coarsely to quickly identify blobs in the image and
estimates the horizontal motion of each blob found. (Recall that the objects in the scene
are assumed to move in horizontal planes.)

Rs_scan is called by the Executive to enqueue the scans initiallv: it also takes a new
image in the frame buffer. (Actually. each image frame consists of a pair of images at
one-half horizontal resolution. Rs_segment uses these two images to estimate the horizontal
velocity of each detected segment. Subsequent modules use only the second image of the
pair.)

Rs.segment recognizes a segment? in the pair of images if the segment appears iu both
frames and its images overlap spatially (if the two images are overlaid on one anotlier).

EN

" Each detected segment’s horizontal velocity is also estimated, and all the segments detected
- on this horizontal raster line are recorded in the segment list. Then an rs.seg merge ic
o enqueued to work on these results.

Rs_seg_merge tries to merge each segment found on the indicated raster line either into
an existing blob® or with another unmerged segment to create a new blob. A segment may
merge into a blob or with another segment if they overlap and their estimated velocities are
“close™ to one another (as determined by a pre-defined percentage-error threshold). Theu
an instance of rs_sweep is enqueued.

Rs_sweep sweeps through the blob list to cap off existing blobs by noting a lack of
segments in the expected positions on the rasters above and below the known extent of each
blob. For each blob that is apparently bounded by background. an od _zoom is enqueued to
examine that region of the image.

*The confidence of an object reflects the quality of the data about the object.

*A segment is a bright section of a horizontal line that is surrounded dark sections

®A blob is a set of verticallv adjacent and horizontally overlapping segments whose velocity estimates are
compatible
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Object Discrimination Cluster (od_*)

This cluster examines at finer resolution each subimage identified by the Raster Scan Cluster
as a potential object and uses its results to update the world database.

Od_zoom copies the indicated subimage from the frame buffer into a temporary image
buffer. If an object appears to be “clipped™ by any edge of the subimage (i.c.. the objrct
is not completely contained in the subimage) the subimage is discarded: otherwise. an
od_identify is enqueued for each object found in the image.

Od_dentifv spatially back-projects its object-image onto the world DB to find objects
already known in the world to which this image might correspond. If no objects of about
the same size are found in the expected locations, or the confidence of the closest match
is low (i.€., the accuracy of the information on this object is suspect) the image’s “color”
(mean and variance of brightness) is calculated and the world DB updated by the beet
match (if anyv are “close™) in color, size, and etc.. If no existing object matches the imuge
well enough. a new object is placed in the world DB.

A.3 Libraries
Task Queue Manager (re_queue)

This library provides the operations ncw_queue. enqueue, dequeue_ highest, dequeue. and
g-flush operations on instances of priority queues of tasks. A Module is enqueued as a
pointer to a function. with a pointer to a structure that holds the function’s arguments. a
function to free the argument in case of a q_flush, and the module’s priority.

Graphics Display (re gfx)

The graphics display runs under SunTools. It provides the ability to start up Rover's display
window. clear it. and draw crosses, lines and boxes in the window. These facilities are used
by the clusters to display their results as Rover runs.

Datacube Interface (re_dq)

This library implements functions to digitize a new image frame in the frame bufler. and
to get any subwindow of the frame buffer for closer inspection.

Binary Line Segmenting (rs_lib)

A one-dimensional Kirsch edge detector and general-purpose line segmenter are imple-
mented. The edge detector is a simple “difference of boxes™ applied to each point on
the line (image vector) that is an argument to the edge detector. Thus the result of the
edge detector is a magnitude vector in which rising edges of brightness in the image ver-
tor appear as peaks, falling edges appear as valleys. and segments of constant brightness
give no responsc. The edge detector also retarns the mean and standard deviation of the
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brightnesses of the points on the line. The line segmenter locates “peak-vallex™ pairs vl
absolute values exceed a threshold supplied to the function as an argument.

Segment and Blob Lists (re_segbuf)

Essentially, the operations new, insert, and member (like the operations on the abistract
data type. set) are implemented for use on segment and blob lists.

Temporary Image Buffers (re_tib)

The operations new. get _image, and {ree are provided for using the Temporary Image Buffi:-
(TIBs). TIBs are used in the Object Discrimination Cluster to hold subimages from the
image frame.

Image Partitioning (re_partition)

Facilities are provided for searching within and splitting image partitions in TIB-.

Object Color Identification (re_color)

This library implements functions to calculate the “color” of an image. and to match a
color against the system's current registry of colors. The color an object is the pair iniean.
variance) of the brightness of the image of the object. It is assumed to uniquely identify an
object.

World Database (DB) Manager (re_world)

This library provides the interface to the spatially indexed world model. It implements
the operations necessary initialize the DB. search a spatial region of the world. attempt to
match a given object with an existing one in the DB, update an existing object with new
information. insert a new object in the DB, and degrade the information in the DB.

B Building on Rover

For the reader who wishes to extend the current implementation of Rover to realize greater
functionality, this section is devoted to outlining our mistakes for vour benefit. and indicat-
ing obvious directions for extending Rover.

B.1 Hints for Anguish-free Hacking

We offer these suggestions for vour enhanced hacking pleasure (take them with as mamny
grains of salt as vou like):
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1. Read The Elements of Programming Style [Kernighan and Plauger 197 At leas:
scan the Summary of Rules at the end—it only takes two minutes. and the reminder-
may save you many horrors we were not spared in the initial implementation.

2. Follow the conventions established in the existing code. Each lends itself to clear code.
and minimum interaction between source code in separate files.

3. Adopt the following convention regarding allocating and freeing memory for tempo
rary results:

e Any library that exports a function which returns malloc’d memory as a result
must also export a function to free such objects as its functions create.

e Any function using a function that returns malloc’d memory is responsible for
utilizing the associated freeing mechanism to prevent memory leaks.

4. Of course. it is even more important to avoid free’ing memory that other functions

may reference in future. as this leads to unpredictable results.

5. Try to use a tight design-implement-test cvcle to keep changes as incremental as
possible.  Aud of course keep backup copies of the latest version of working code.
(RCS is fairly nice for this.)

C Extensions

There are several clear directions that future work with Rover could take. We list some

e Do something better with clipped windows than discarding them. For instance. try
getting a subimage from the frame buffer adjacent to the clipped edge to grow the
window in hopes of finding the whole object. Windows are clipped frequently in
practice, so this could lead to significant gains in performance. It could. of course, he
argued that the Raster Scanner should be improved to reduce this frequency. Also. in
the presence of occluded images (consider several balls, each overlapping) we might
not be able to afford to discard partial images.

¢ Replace simple thresholding in the Object Discrimination Cluster with sparse appli-
cation of an edge operator to locate approximate boundaries of objects. {The r<Jib
was not available when the O.D. cluster was implemented.)

o Extend the declaration of the return values of modules to be a struct union and use

this to explore top-down strategies for directing the search of the image frame and
processing of located blobs.

o Experiment with the compile-time parameters (€.g., confidence thresholds, error mea-
sures and limits) of the system to improve performance in anyv or all modules and
libraries.
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o Explore other structures for organizing the system (e.g.. hierarchical —see Section 5,11
and other control strategies (€.g.. more direction by the executive. dvnamic ceurel: for
blobs. and using dvnamically assigned priorities to direct processing).

o Extend the svstem to recognize and handle other tvpes of objects (€.g.. cubes) more
sophisticated identification methods (€.¢., markings on objects) and to understan:!
occlusion explicitiy.

e Extend the model and system to include camera movements and to support sonie of
the image analyvsis presented earlier.

e Extend the model to two cameras.

e Extend the svstem to exploit our MaxVideo (TM) pipeline processor for low leve!
operations.

o Harness the MIMD power of our Butterfly (TM) multiprocessor to do real parallel pro-
cessing using SMP (Structured Message Passing) process families {LeBlanc et al. 19~
or LYNX [Scott 1986b.Scott 1986a].

C.1 Templates for Your Own Code

To illustrate the basic forms of the main tvpes of Rover's components. Figure € gives &
sample of how the skeleton of a cluster declaration file should look. Similarly. Tieur
describes how a module in that cluster might appear. and Figures & and 9 illustrate the
essential structure of a library.

D Rover’s Code

We conclude with more detail on the existing source code itself.  The code can be
found on the system in /u/coombs/projects/rover. Amn executable is available to b
run (on the Sun with the Datacube—currently betelgeuse) and is located in directory
/u/coombs/projects/rover/bin. It is invoked from the she'l by

rover [-c<camera#>] [-f<follow-target#>]

Rover expects to run in the Sun View environment, and its graphics interface appears i
the upper left quadrant of the screen.

D.1 Coding Conventions

Several conventions are followed in the Rover code. Some of the more helpful ones are listed
here,
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;;k /* Rover Sample Cluster Declaration Template --- for EXPORTING
{} declarations to modules that need to know your types, etc to
e interact with this cluster. ./
#ifndef CLUSTER_TYPES /* Protect your declaration files from
e being included more than once.
-
AN Bence, this #define’d constant must
» be unique in your system. That’s
- why we base 1t on the file name, as
N a convention. #/
e #define CLUSTER_TYPES 1
:: /* Include only those declarations needed to declare the types, etc
-l that you declare here. */
j} #include "re_types.h" /* in case you need global declarations */
{: #include "re_queue.h" /% needed to declare your modules */
[\
S
N /* Module parameter types are declared here so other modules can
) construct arguments for your modules. %/
N typedef struct {
int argl,
" float arg2;
o } mod_parm_t;
.
o
‘.
? /* export modules in this cluster so other modules can enqueue them on
‘ the task queue. ./
- extern q_func_t this_module();
»
. #endif CLUSTER_TYPES
? .
* . .
Figure 6: Sample Cluster Declaration (cluster_types.h)
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Lo /* Rover Sample Module Template ~-- Include declarations of global
system, libraries, and other clusters that this module interacts

' with. */
&N

A
:. #include "re_types.h" /% Always include rover’s global types */
\{ #include 're_exec.h" /* declaration of global data objects */

#include "re_queue.h" /* any necessary libraries %/
c #include "re_gfx.h"
\
.
;\ #include "other_cluster_types.h" /* a cluster this module will

5 interact with */

3 #include "cluster_types.h" /* this cluster’s declarations =*/
:' q_func_t /* every module returns type q_func_t
b (declared in re_queue.h) */

! module(my_parm)

o mod_parm_t * my_parm;

N {
<
~ other_mod_parm_t * other_mod_args; /* declared in other_cluster_types.h #*/
~ q_func_t return_value;

Y /x ing here */
7 my processing here
N

<
:} /% enqueue another module on the global task queue (work_q, from
o re_exec.h) to perform the next logical operation based on what I
x have seen. Coerce the type of the args-ptr to what the queue

library expects. */

lq enqueue(work_gq, other_module, (q_arg_ptr_t) other_mod_args,
:} arg free_fn, OTHER_MOD_PRID);
Gy
h i return (q_func_t) return_value; /* return a value */

oy }
e .
o
;. Figure 7: Sample Module Source (module.c)
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/* Rover Sample Library Declaration Template --- for EXPORTING G-
declarations to modules and libraries that want to use the
facilities you provide. */ N
#1fndef LIBRARY /* Always protect your declaraticr ::
files from be included more -
than once. %/ N
#define LIBRARY 1
#include "re_types.h" /* any declarations needed */ :j ]
*
/* Library function parameter type declarations */ P
typedef some_type arg_typei; “.
typedef global_type arg type2; /* global_type declared -
in re_types.h */ -
typedef return_type funci_t; ';_
typedef another_type func2_t; o~
/* export functions in this library s/ "
extern funci_t funci(); ne
extern func2_t func2(); }:
.:\
#endif LIBRARY
Figure 8: Sample Library Declaration (library.h) e
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/* Rover Sample Library Template --- this file (library.c) contains
the library functions advertised in library.h and any internal
utilities that are expected to be of use only in implementing
this library’s facilities. */
#include "re_types.h" /* Always include rover’s global types s/
#include "re_exec.h" /* declaration of global data objects
if necessary */
#include "re_queue.h" /% any necessary other libraries =/
#include "re_gfx.h"
#:1nclude "library.h" /* my declarations =/
funci_t /* 1ib functions declare the:r
l return types #*/
Y funci(argl, arg2)
[ arg_typel argl, arg?;
{
funci_t return_value;
/* my code here #*/
return (funci_t) return_value; /% return my value */
}
X
func2_t /* 11b functions declare their
Teturn types #*/
func2(argl, arg2)
arg _type2 argl, arg2;
{
func2_t return_value;
/* my code here */
return (func2_t) return_value; /¢ return my value =/
}
Figure 9: Sample Library Source (libraryv.e)
29
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Declaration files are protected against being multiply included (leading to redefini
tions of objects and tvpes) by defining a constant upon the first inclusion that act-
as a guard against subsequent inclusion during a single compilation. {See Figures G
and &)

Type definitions are named in either of two common forms:

1. NEW_TYPE in all capital letters, or
2. new_type_t in lower case, with the suffix “_t.”

Declarations are made as local as possible to avoid interference among types. data
objects, and functions.

File name prefixes refer to the major component of the system to which the fils
belongs. The three primary prefixes in the current code are:

1. re.--the system at large (Roving Eves)

2. rs_—the Raster Scan cluster

3. od.—the Object Discrimination cluster.
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